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Galilei covariance and quasi-free representations of 
Fermi fields 
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Germany 

Received 21 January 1982 

Abstract. Some quasi-free irreducible representations of the CAR algebra of a non- 
relativistic free Fermi field are constructed, which are covariant under certain subgroups 
of the extended Galilei group. The construction of fully covariant (but reducible) rep- 
resentations as direct integrals of partially covariant ones is described. This method is also 
applicable to arbitrary C*-algebras and other covariance groups. 

1. Introduction 

Covariance properties of quasi-free representations of Fermi fields have been investi- 
gated recently (Kraus and Streater 1981). The general theory was illustrated there 
by the particular example of relativistic fermions, with the inhomogeneous Lorentz 
group as covariance group. The non-relativistic case (i.e. Galilei covariance) has been 
investigated by Stark (1981). Some partially covariant models, as constructed there, 
are discussed here in § 2, whereas § 3 describes a generalised version of the direct 
integral construction used by Stark (1981) to obtain fully covariant models from 
partially covariant ones. This method is also applicable to bosons. 

We first recall some basic facts. (For more details and references to the original 
literature see Kraus and Streater (1981).) The CAR algebra %-the field algebra of 
a Fermi field-is generated by the annihilation and creation operators a(cp) and a(cp)*, 
which satisfy the canonical anticommutation relations 

a(cpb(4 )  +a(+L)a(cp) = 0, a(cp)a($)*+a(J/)*a(cp)= (cp, 4). (1) 

Here cp and 4 are one-particle state vectors from a separable Hilbert space X, a ( q )  
depends antilinearly (and thus a(cp)* linearly) on cp, and (cp, 4 )  denotes the scalar 
product in X. 

Given a state (i.e. a positive linear functional) w on %, we obtain from it a cyclic 
representation r, of VI on a Hilbert space %,, by the well known GNS construction 
(see e.g. Emch (1972)). We study here the so-called quasi-free states wA, defined by 

(2) 

in terms of an operator A on X with OSA s 1. A quasi-free state W A  is pure, thus 
leading to an irreducible representation 7rUA = rA on %,A = X A ,  if and only if A is a 
projection operator. We consider this case only. Two such representations rA and 
rE are unitarily equivalent if and only if A - B belongs to B ( X ) 2 ,  the Hilbert-Schmidt 

wA(a(cpn)* e . .  ~ ( V I ) * ~ ( @ I ) .  . . a ( d " ) ) = S n m  det[(4i, A ~ k ) l  
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class of operators on X. Physically speaking, equation (2) describes a state of the 
Fermi field in which all one-particle states in the subspace AX of X are occupied, 
whereas all states in (1 -A )X  are unoccupied. Thus, in particular, A = 0 yields the 
vacuum state wo and the Fock representation ro, whereas A = 1 describes the ‘plenum’ 
state w l r  corresponding to the ‘anti-Fock’ representation T,. 

Symmetries of the one-particle space X induce automorphisms of the CAR algebra 
21. Namely, if V, (g E G) is a continuous unitary representation of a symmetry group 
G on X, then the automorphisms T,  of 2l defined by 

Tg(a(cp))=a(Vgcp) (3) 

represent G in Aut 2l, the group of automorphisms of ‘U. With C denoting a subgroup 
of G, a representation T of 2l on a representation space %’ is called C-covariant if 
the automorphisms T g ( g  E C) are unitarily implemented on X, i.e. if there is a locally 
continuous unitary projective representation (i.e. a representation up to a factor) U, 
of C on %’, such that 

T ( T K (  y ) )  = y)U,* for all Y E  2l and g E C. (4) 

As shown by Kraus and Streater (1981), an irreducible quasi-free representation rA 
is C-covariant if and only if 

X ,  A - V,A V: E B(X)z  ( 5 )  

for all g E C. An equivalent condition is* 

for all g E C, with { c p i }  denoting an orthogonal system spanning the subspace AX of 
occupied one-particle states. To prove the equivalence of ( 5 )  and (6), consider the 
projection operators A’ = 1 -A,  A, = V A  Vz, Ab = 1 -A,  and the non-negative 
operators R, = AALA, RL = A’AA’ .  Since X i  = R, + RL, ( 5 )  is equivalent to R, E 

B ( X ) ,  and Rh E B ( X ) , ,  the trace class of operators on X. Evaluating the trace with 
a complete orthogonal system containing the system {pi} as a subbasis in AX, we obtain 

Therefore ( 5 )  directly implies (6). Vice versa, (6 )  implies R, E B(X)’ and, with g-’ 
for g, also R,-1 =AAb-lA = (Ah--lA)*(Ab - I A ) E  B ( X ) , .  This, being equivalent to 
Ah- I A  E B(X)2, implies 

V,(Ah-lA) V;  = A’A, E B(X)z ,  

and thus, finally, also 

A’A,(A’A,)* = RL E B(X)1. 

2. Partially Galilei covariant models 

The (inhomogeneous) Galilei group r of classical mechanics consists of the coordinate 
transformations 

(7) y(7, a, U, RI: x + x f  = R x +  ut+a, t +  t’= t + r  
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containing a spatial rotation R, a boost with velocity U, a space translation by a, and 
a time translation by T, and satisfying the multiplication law 

(8) 

For quantum mechanics, the covering group f of r-also called 'Galilei group' here-is 
more important than r itself. This covering group f results from r by reinterpreting 
the symbol R occurring in a 'Galilei transformation' Y(T, U ,  U, R )  E f as an SU(2), 
rather than an SO(3) matrix. In order to simplify the notation, however, R will still 
be interpreted as the SO(3) matrix corresponding to R E SU(2) via the well known 
homomorphism, whenever R acts on spatial vectors like b or w. With this notation, 
the group multiplication law has the same form (8) in r and in r. 

The symmetry group G of a free particle of mass m in non-relativistic quantum 
mechanics (see e.g. Ltvy-Leblond 1971) is not the group f ,  but rather a central 
extension of it, whose elements 

Y(T,  U ,  U, R)y(cr, b, w, S )  = ~ ( T + u ,  U + Rb +cm, u +Rw,  RS) .  

g = (ein, Y )  = g(a, ~ , a ,  U, R) 
consist of a Galilei transformation y = Y(T,  a, U, R) E f and a phase factor e'". The 
multiplication law in G reads 

9 Y Y ' L  (9) y)(eiP, y ' )  = ( e i ( a + B + f ( v . ~ ' ) )  

or 

g(a,  T, a, U, R)g(P,  U, 6, w, S) = g(a + P + 5(r, r'), 7 + U, a + Rb + m, U + Rw, RS) ,  

with y' = y(cr, b, w,  S )  and 

(10) 

( ( y ,  y ' )  = fmv'cr + mu Rb. (11) 

We call G the extended Galilei group. 
The state space X of a particle of spin s may be represented as the space of 

(2s + 1)-component square-integrable momentum space wavefunctions cp,( p ) ,  p = 
1, . . . , 2 s  + 1. On such wavefunctions, the unitary operator V, representing the group 
element g = g(a,  T, U ,  U, R) acts as (Ltvy-Leblond 1971) 

with D: , (R)  denoting the matrix elements of the spin-s representation D" of SU(2). 
By identifying X, in the usual way, with the tensor product %?OC'"'' of the 'orbit' 
state space = L'(p) of square-integrable momentum space wavefunctions p ( p )  and 
the (2s + 1)-dimensional spin space C"+", (12) may be written as 

v, = v; OD'(R)  (13) 
with the representation Vi  of G on given by 

(v;cp)(p) = exp[i(a + p ' ~ / 2 m  - p  * a ) l c p ( ~ - ' ( p  - m u ) )  (14) 
and corresponding to a particle of spin zero. 

The projection operators A studied here are taken to be of the particular form 

A = A % I  (15) 

and the unit matrix 1 in spin space. For such with a projection operator A" on 
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A the covariance condition ( 5 )  becomes 
0 0 o* A - V d  V :  = (Ao - V , A  V ,  )O 1 E B(X)Z, 

by virtue of (13), (15) and the unitarity of the matrices D'(R).  Since the space C2'+' 
is of finite dimension, ( 5 )  thus becomes equivalent to 

0 0 o *  X i  =Ao  - V,A V ,  E B ( P ) z ,  

which is nothing but the covariance condition ( 5 )  for the spin-zero representation 
(14). It is thus sufficient to investigate further the case of spinless particles only, 
because the results so obtained can be applied immediately, via (15), also to the 
general case of arbitrary spin. By this restriction to the case s = 0, the superscript 0 
on P, V i  and A' becomes superfluous, and is thus omitted from now on. 

The easiest way of satisfying the covariance condition ( 5 )  for some 'covariance' 
subgroup C E G is to choose A invariant under C, i.e. to satisfy 

[ A ,  V,l= 0 for all g E C, (16) 

such that X ,  = O  on C. In this case, equations (2) and (3) imply 

for all Y E  2l and g E C, W A  (Tg ( y)) = W A  ( y) (17) 

i.e. wA is a C-invariant state; vice versa, (17) implies (16), by (2). The C-covariance 
of a representation 7ru corresponding to a C-invariant state w also follows directly by 
the GNS construction, and the implementing operators U,, g E C on Xu form a true 
(rather than only a projective) representation of C in this case (Emch 1972). 

Since the representation V of G considered here is irreducible, the only G-invariant 
projection operators are A = 0 and A = 1, leading to the Fock and anti-Fock rep- 
resentations, respectively, which are already known to be covariant. Non-trivial 
projection operators A can thus be invariant under proper subgroups C of G only. 

Every projection operator A is invariant under the central subgroup P of pure 
phase factors (i.e. of elements g = (e'", y )  E G with y = e, the unit element of r), which 
according to (14) act multiplicatively on X. The corresponding automorphisms T,(g E P) 
of %-the so-called gauge transformations-are thus implemented in every representa- 
tion TA. But again this is well known. 

Less trivial-and physically more interesting-subgroups of G are the Euclidean 
group E and the homogeneous Galilei group H, as obtained from G by restricting 
the parameters of group elements g(a, 7, U ,  U, R) by the conditions a = 0, 7 = 0, U = 0 
for E, and a = 0, 7 = 0, U = 0 for H. We may also consider them as subgroups of the 
Galilei group T. Since R is still an SU(2) rather than an SO(3) matrix, we are actually 
dealing with the covering groups of what are usually called Euclidean and homogeneous 
Galilei groups. 

For the Euclidean group, with g = g(0, 0,  a, 0, R), equation (14) yields 

( v & ) ( p )  = e-ip'aq(R-'p). (18) 

The representation of the homogeneous Galilei group H has a correspondingly simple 
form in the configuration space representation, i.e. in terms of the Fourier transformed 
wavefunctions 

+(x) = ( 2 ~ ) - ~ "  eiP"cp(p) d3p. (19) I 
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For g = g(0, 0, 0, U, R) E H, (14) and (19) yield 

( v@)(x) = eim"'"6(R-'x). (20) 

By (18), projection operators of the form 

are invariant under all Euclidean transformations V,, g €E.  Here x n ( p )  is the 
characteristic function of an arbitrary spherically symmetric volume fl in momentum 
space, 

R f i  = 0 for all R E S0(3) ,  1 P E f l  

P &  0 
X d P )  = { 

and acts as multiplication operator on X = L * ( p ) .  Moreover, such operators A are 
invariant also under the time translation subgroup T1 of G (a = 0, a = 0, U = 0, 
R = 1)-as is almost obvious from (14)-and under the 'gauge' subgroup P (see above). 
According to (10) and (1 l ) ,  the three subgroups E, TI and P commute with each 
other, thus generating a subgroup e of G isomorphic to the direct product E O T I O P .  
Every A of the form (21) thus leads to an e-covariant representation r A ,  and as W A  

is invariant under e, the implementing operators U, on RA form a true (rather than 
only a projective) representation of E. 

If, in addition, the subgroup B c G of pure boosts (a = 0, 7 = 0,  a = 0, R = 1) were 
also implemented, then the representations vA would be covariant under the whole 
extended Galilei group G .  This, however, is not the case. For a pure boost, g =  
g(0, 0, 0, U, l ) ,  V, acts according to (14) as a translation operator: 

( v,cp P ) = cp ( P - mu 1. 
With A given by (21), we therefore obtain 

A -  V d V z  = x d p ) - x d p - m u ) ,  

which for U # 0 is a Hilbert-Schmidt operator only in the trivial cases where fi is 
either empty (and thus A = 0) or the whole of momentum space (and thus A = 1). 
Therefore the covariance condition ( 5 )  is violated for boosts unless A is trivial. 

The close analogy of equations (18) and (20) implies that projection operators of 
the form 

A = x n k ) ,  (22) 

now acting as multiplication operators on the configuration space wavefunctions +(x), 
are invariant under gauge and homogeneous Galilei transformations V,(g E P or H), 
and thus also under the subgroup H' of G generated by P and H. As H and P commute, 
by ( lo) ,  H' is isomorphic to HOP.  The states wA obtained from (22) are thus 
H'-invariant, and the corresponding representations H'-covariant, with implementing 
operators U, representing H' on %A. 

Moreover, since by (14) and (19) the space translation subgroup T3 of G (with 
a = 0, I = 0, U = 0, R = 1) is represented by translations +(x) + +(x - a )  of the configur- 
ation space wavefunctions, it follows as above that space translations are not imple- 
mented in representations rA with (22) unless A is either 0 or 1. The last result now 
implies, however, that time translations are also not implemented. To show this, 
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assume the contrary. With (10) and (1 1) one easily verifies the identity 

g(imu2.T, 0, 0 ,  -U, l)g(o,  -.T,o, 0 ,  l)g(o, 090, U, l)g(o,  7, 0 ~ 0 ,  1) = g(0, 0,  0 ,  1). 
(23) 

By the previous results and our assumption, the four transformations on the left-hand 
side of (23) are implemented in rA. The same, then, must be true for their product, 
which is a pure space translation. This is impossible, however, as shown above. 

In the models considered so far, the covariance condition ( 5 )  was satisfied in the 
stronger form X, = 0; i.e. the state wA was invariant under some ‘covariance’ subgroup 
C of G. Another class of partially Galilei covariant models can be constructed (Stark 
1981) by exploiting the covariance condition (6) or rather, again, a somewhat stronger 
condition, namely 

C (l-I(pt, Vg~i )12 )<~*  (24) 
i 

Since 
0 1 -1 [(vi, vgpk)12 1 - I(vi, vRvi)12 

k 

for all i, (24) indeed implies (6), and is thus, if valid for all g in some subgroup C c G, 
sufficient for C-covariance. The models in question are constructed by specifying the 
orthonormal vectors pi ( i  = 1 , 2 , .  . .) occurring in (24). Remember that these vectors 
span the subspace AX of X, i.e. in Dirac’s notation, 

An Euclidean covariant model is obtained by choosing a suitable increasing sequence 
of radii T i ,  i = 1 , 2 , .  . . , and taking pi to be state vectors with the configuration space 
wavefunctions (cf equation (19)) 

which are normalised if 

IciJ2 = [ $ r ( r ;  -r;-l )I-’. (27) 

Their mutual orthogonality is obvious. Every vector cpt-and therefore A, as given 
by (25)-is invariant under rotations, &(x) + & ( K 1 x ) .  To prove covariance under 
the Euclidean group E, it therefore suffices to verify condition (24) for space transla- 
tions, g=g(O,O,a,O, 1 ) ~ T 3 ,  with (V&)(x)=cZ;i(x-u). 

If (as assumed here, see below) the differences r i - r i - l  increase with i, then for 
every fixed a there is an index io such that la I = a  < ri - r i - l  for all i 3 io. The finitely 
many summands with i<io are immaterial in (24). For i 3 i o ,  an elementary but 
lengthy calculation (Stark 1981) leads to 

1 - I ( c~ i ,  Vgpi)12 

2 2  3 3  9 2 2  2 2 =[la(ri  +r i - i ) ( r i  - r i - l ) - i g a  ( T i  + r , - l )  

1 3 3  3 3 4 2  2 1 6  3 3 -Sa ( r ;  - r i - l ) + G a  (Ti + r i - l ) - a a  ] ( r i  - r i - 1 ) - 2 .  

Now choosing 
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with constants p > 0 and K > 1, the quotient 

becomes a rational function of K ,  with a numerator and a denominator polynomial 
of degree 1 1  i2 + 1Oi + 5 and 1 1  i2 + 12i + 6, respectively. Thus K > 1 implies Qi + i  0, 
so that, according to the ratio test, the series (24) is indeed convergent. 

For pure boosts, g = g(0, 0 ,  0,  v, 1)  E B, on the other hand, with 

( v ,'PI -.)(A-) = eimo'r+l(x), (29) 

the covariance condition (6) is violated. Namely, (26) and (29) imply (cp,, V@k)=O 
for i # k,  and 

e""" d3x. 
r l  - I L lrls r8 

This is easily evaluated and yields, together with (27) and (28), an expression for 
(cpl, VRcpI) which converges to zero for i + 0;) (Stark 1981). Therefore the series 

is divergent. 
We were unable to decide by comparably simple estimates-and therefore leave 

it  open here-whether or not the time translation subgroup TI is implemented. The 
covariance group C of the representation rA constructed above is thus either the 
group k = E O T I O P ,  as for the previous model (21), or the smaller group E ' s E O P .  

In the latter case the implementing operators U,, g E E', on XA can be chosen to 
form a true representation of E'. Namely, as shown by Bargmann (1954), the phase 
factors of the operators U, implementing the subgroups E and P of E' may be chosen 
such that these operators form true representations U,, g E E or P, of these subgroups. 
Moreover, since wA is invariant under gauge transformations and rotations, we also 
know that the gauge operators U, = U,, g = g(a, 0 ,  0 ,  0 ,  1)  E P, commute with the 
rotation operators UR = U,, g = g(0, 0 ,  0, 0, R ) ,  since the GNS construction yields 
commuting gauge and rotation operators, and the U, are unique up to phase factors. 
Thus there only remains to prove the relation [U,, U,,] = 0 for arbitrary gauge 
operators U, and translation operators U,, = U,, g = g ( 0 ,  0 ,  U, 0,  1) E T3. Since (due 
to the irreducibility of rA) U,, g E E', is a projective representation of E', we already 
know that 

U,U, = eiccu*n'U,,Ua. (30) 
From this and the representation property 

U n ,  u n 2  = u a l + n 2  

we easily obtain the relation 

( (a ,  ad + [ (a ,  4 = ((a, UI + ad, 

which (together with continuity) implies 

((a, U )  = k(a )  * U 
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with some ‘vector’ k(a). The operators U. and UR generate a representation of the 
Euclidean group E, which implies 

Ui’UauR = UR-laa 

From this, together with (30), (31) and the commutativity [UR, U,] = 0 (see above), 
we get 

U,’ U,UaUR = eik(a).aU-l R UauuuR =eik(a)’aUR-IaU, 

= UuUR-Ia  =exp[ik(a) * R - ’ u ] u R - ~ ~ u , ,  

and thus 

k(a) * R - ’ a  = R k ( a )  * a = k(a) a, 

for all a, R and a. But this implies k ( a )  = 0, as desired. 
If, on the other hand, the invariance group of rA is 6 rather than E’, we may 

similarly prove that the operators U,,g€E, commute not only with all gauge 
opearators U, but also with all U, = U,, g = g(0, T, 0, 0, 1) E TI. However, instead of 
[ U,, U,] = 0 we can only prove 

U,U~ = eicuTU,U, 

with some constant c (see also Bargmann 1954), which means that the operators U,, 
g E 6, do not form a true representation of 6 unless c = 0. 

If configuration space is replaced by momentum space, we obtain from the models 
considered above other models, which are covariant under the homogeneous Galilei 
group H. The vectors qi in (25) are now defined by 

Ci if ri-l  s IpI s ri, 
otherwise. q i ( p )  = ( 

in place of (26), whereas equations (27) and (28) remain unchanged. These vectors 
are again rotation invariant, and since now boosts act as momentum space translations, 
q i ( p )  + q i ( p  - mu), whereas space translations induce the transformations vi (  p )  + 
e-’p’aqi(p), it now follows that boosts are implemented whereas space translations are 
not. In this case, moreover, equation (23) implies as above that time translations are 
not implemented. The covariance group C of the models defined by (32) is thus 
H’=HHOP, as for the models defined by (22). Again the operators U,, gE H’, may 
be chosen to form a true representation of H’, as follows exactly as above for C = E’. 
(Note that E and H, and thus also E’ and H’, are isomorphic.) 

That equations (22) and (32), although leading to the same covariance group H’, 
define unitarily inequivalent CAR representations rA, is almost obvious, and could be 
proved formally with the help of the equivalence condition A - B E B(X)* for quasi- 
free representations rA and rB. This remark applies also to the representations 
defined by equations (21) and (26), respectively. 

Whether or not there are, besides the ‘trivial’ ones equivalent to either the Fock 
or the anti-Fock representation, also ‘non-trivial’ representations rA which are 
covariant under the whole extended Galilei group G,  is not known. The failure of 
our attempts to construct such representations might indicate that, as for the PoincarC 
group (Basarab-Horwath and Polley 1981), the answer to this question is negative+. 

t Nore added in proof. In the meantime, Basarab-Honvath (1982, private communication) has proved this. 
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3. Direct integrals of partially covariant representations 

We shall now describe a method of constructing fully covariant CAR representations 
from partially covariant ones. The new representations are obtained as direct integrals, 
and are therefore always reducible. The method is formulated here more generally, 
for an arbitrary C*-algebra 8 and an arbitrary covariance group G, and is thus 
applicable also, e.g., to the CCR algebra of a Bose field, or to the relativistic case with 
the PoincarC group for G. A similar construction has been described by Basarab- 
Horwath et a1 (1979). 

Let G be a topological group, K a subgroup and T a subset (not necessarily a 
subgroup) of G, such that every element g E G may be decomposed in the form 

g = kt (33) 

with unique k E K and t E T. Assume that k and t depend continuously on g. Keeping 
g E G fixed and decomposing the group elements tg, with arbitrary t E T, in the form 

tg = k’t’ (34) 

analogous to (33), we obtain two mappings aR: T -* T and &: T + K, defined by 

a&) = t’ and P n ( t )  = k’, 

respectively. Then both t’ and k’ depend continuously on t and g, and for g = e (the 
unit element of G) we get, in particular, 

a e ( t )  = t, = e. (35) 

A measure dp( t )  on T is called invariant, if for an arbitrary integrable function f ( t )  
on T the function f (a , ( t ) )  is also integrable, and satisfies 

for arbitrary g E G. We assume that there exists such an invariant measure on T. 
Now consider a C*-algebra 8 with a continuous representation T ~ ,  g E G, of the 

group G by automorphisms T~ of 3. Let 7r be a K-covariant representation of 
3-irreducible or n o t - o n  a Hilbert space X, with implementing operators uk, k E K, 
forming a true (rather than a projective) representation of K on X, i.e. 

uk.?r( y) U:  = T ( T k (  y)), for all k, k l  and kZ E K and Y E 8.  

To construct a new, fully G-covariant representation 73 of 8, we take the representation 
space &’ to be a direct integral over T, 

u k l  u k 2  = u k l  k2  

with X ( t ) = X  for all t, and an invariant measure dp(f) .  Vectors (PE& are thus 
represented by functions q( t )  on T with values in X, with the inner product being 
given by 
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The unitary representation fiR, gEG, of G and the corresponding G-covariant rep- 
resentation 73 of ??I on k are then defined by 

(37) (fi&)(t) = U p , ( r ) ( P ( a g ( t ) )  = U k ' ( P ( f ' )  

(with k' and t' from (35)) and 

(73(Y)(PP)(t) = d7t(Y))(P(t) ,  (38) 

respectively. 
The operators f ig  are isometric since, by (36) and (37), 

t2  = f 3 r  k lk2=  k3 

(due to the uniqueness of the decomposition (33)), and therefore 

fig1 f i g *  = fig182' 
Together with f i e  = l-which follows from (35) and (37)-the relations just proved 
imply that f ig ,  g E G, is a unitary representation of G. The continuity of this representa- 
tion will not be proved here, since it should be sufficiently plausible already from the 
assumed continuity properties of a , ( t )  and & ( t )  and equations (35). 

The representation properties 

73(Q1Y1+azYz)=a173(Yl)+CYZ7i(Y2), 

7i( Y*)  = (e( Y))*, 
+( Y1 Y2) = 7% Yl)+( Y2), 

$(l) = 1 

of 73 follow from (38) by straightforward calculation. It is also obvious from (38) that 
7i is always a reducible represptation. 

G-covariance of 73 under Ug, as expressed by 

fig&( Y )  = 7j(TR( Y)) f iR  (41) 
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and, on the other hand, 

( + ( ~ g (  Y ) ) f i g V ) ( f )  = n ( T r ( T g (  y ) ) ) ( f i g P ) ( t )  = r ( T r ( T c  

with tg = k't' in both cases. The last relation implies 

Tr(Tg( y ) )  = T r g (  y )  = Tk'r'( y )  = T&'(Tr'( y ) ) ,  

so that, indeed, (41) follows. 
In order to apply this construction to a specific example, 

Y ) ) )  U&'P ( f ' ) ,  

with given group G 
and covariance subgroup K, one has to find the subset T of G 'complementary' to 
K and the corresponding decomposition (33) of group elements, to determine 
explicitly the mappings ag and 0, defined via (34), and to look for an invariant measure 
d p  (I) on T. We sketch this procedure here for the case of the extended Galilei group 
G, with K being one of the covariance groups e, E' or H' of the models discussed in 
9 2. All calculations-using the multiplication law (10)-are straightforward, and are 
thus omitted here. 

In the case K = E = E O T l  O P  = {g(a, T, a, 0, R)}, we take T = B = {g(O, 0, 0, U, l)}, 
the subgroup of pure boosts. Then a general group element, 

g = g ( a , T , a , u , R ) E G ,  (42) 

k =g(a ,  T, U ,  0, R)E &, (43) 

ag:g(O,O,O, w, 1)+g(O,O,O,R-'(w+u), 11, (44) 
P ~ : ~ ( o , o , o ,  w, l ) + g ( a + t m w * ~ + m w  * a ,  T , U + T W , O , R ) .  

dp(g(0,  0, 0, w, 1)) = d3w. 

may be uniquely decomposed as g = kr, with 

t = g(0, 0, 0, R-lu,  1) E B. 
With g as in (42), the mappings a,: B + B and 0,: B + E act as follows: 

(45) 
According to (441, an invariant measure on B is given by 

(46) 
For K = E ' r E O P = { g ( a ,  0, a, 0, R)}, we take T ={g(O, T,  0, U, l)}, the set of boosts 
combined with time translations, which is not a subgroup of G. In this case, the 
equations analogous to (43)-(46) read 

k = g(a,  0, a, 0, R), r = g ( o , ~ ,  0, R-'u,  I), 

( Y g :  g(0, CT, 0, W ,  1) + g(0, (T + 7, 0, R- ' (w  + U), I ) ,  

~ n : g ( 0 , u , ~ , w , 1 ) + g ( a + l m w 2 ~ + m w * n , ~ , a + ~ ~ , ~ , ~ ) ,  

dp(g(0,  u, 0, W ,  1)) = d3w du, 

respectively. 
Finally, in the case K = H' = H O P  = {g(a, 0, 0, U, R)}, we set T = T, = 

{g(O, T ,  a, 0, l)}, the subgroup of space-time translations. Then the equations corre- 
sponding to (43)-(45) become 

k = g ( a + ~ m v 2 T - m u * a , 0 , 0 ,  u , R ) ,  r = g ( o , ~ ,  R-' (u  - T U ) ,  o , ~ ) ,  
( z g :  g(0, Cr, b, 0, I ) +  g(0, U +  7, R- ' (b  + U  -((T+ T)U), 0, I), 
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ps: g(0, U, b, 0, 1) + g(cX + imU2(U + 7) -mU ' ( b  + a) ,  0, 0, U, R ) ,  

such that 

dp(g(0,  U, 6, 0, 1)) = d3b dT 

is an invariant measure on T,. 
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